

CCC Annual Report

UIUC, August 14, 2013

Improvements to Equilibrium Precipitation Model of Precipitate Formation

Aravind Murali (Equilibrium Model and Kinetic Model by Kun Xu) (User-interface by Matthew Zappulla)

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Project overview

Final goal: Design casting practices to prevent transverse cracks

Equilibrium precipitation model^[1]

To solve a system of nonlinear equations, which includes:

- 1. Solubility limits for 18 precipitates with activities from Wagner interaction between elements
- 2. Mass balance for 13 alloying elements during precipitation
- 3. Mutual solubility, e.g. (Ti,Nb,V)(C,N)

Kinetic Model Particle Size Grouping (PSG) Method^[2]

Features of OUR Kinetic Model-

- It simulates nucleation, growth/ dissolution and coarsening as one continuous and competing process with no explicit laws and fitting parameters
- The particles of every size are tracked, ranging from single pseudomolecule (~ 0.1nm), unstable embryos, stable nuclei to very large coarsened particles (~100µm)
- Grouping particles of Geometrically progressing size (reduces groups to <100)
- Grouping saves significant computation time but preserves accuracy

m_j : characteristic number of pseudomolecules for size group j particle

 $\mathbf{m}_{j,j+1}$: Threshold number of pseudomolecules to separate j and j+1 size groups

Average particle ratio
$$R_v = \frac{m_{j+1}}{m_{j+1}}$$

Total number density of each size group

$$=\sum_{m_{j,j+1}>m>m_{j-1,j}}n(m)$$

$$\sum_{m}m(m)=n^{s}$$

 N_i

Aravind Murali

Average molar fraction of each phase

$$p_{j}^{s} = \frac{\sum_{m_{j,j+1} > m > m_{j-1,j}} m \cdot n(m) \cdot p_{m}}{\sum_{m_{j,j+1} > m > m_{j-1,j}} m \cdot n(m)}$$

•

A Consortium

Example with convergence problems

Experimental weld steel used in commercial casting from K.Xu et al.[1]

Dissolved element	Initial concentration (%w/w of steel)
Carbon	0.10
Manganese	1.87
Sulfur	0.007
Vanadium	0.01
Titanium	0.005
Nitrogen	0.005
Aluminum	0.041
Niobium	0.007
Oxygen	0.030
Silicon	0.52
Boron	0.0004
Magnesium	-
Chromium	-

Example of cases where two precipitates formed quickly, problems with the next precipitate forming leading to the program crashing

<u>Simulation Details</u> Initial guess temperature from user – 1600C

Temperature step size – 1C

Simulation ending temperature – 800C

Phase - Austenite

6

Aravind Murali

Weight Percent of Precipitates for Test Case

Modifications to the Initial Guess at Each Temperature Step

Dissolved element	Initial concentration (%w/w of steel)
Sulfur	0.0028
Oxygen	0.0028
Titanium	0.095
Aluminum	0.045
Nitrogen	0.0019
Carbon	0.0036
Manganese	0.081
Silicon	0.0050

Changes to guess value at start of each temperature step (A6.)

- Check for change in supersaturation (g) for \geq each temperature step
- If the supersaturation for a particular \triangleright precipitate group becomes greater than one, use appropriate guesses for element concentrations, mutually soluble coefficients and weight ratios of precipitates

Metals Processing Simulation Lab

Effect of Nitride Precipitates^[3]

Begona Saintillana's^[2] test case

Dissolved element	Initial conc.	Initial conc.	Initial conc.	Initial conc. 99% solid
	LCAK	HSLA	HSLA-LR	segregation HSLA
Carbon (wt%)	0.045	0.045	0.045	0.0453
Manganese (wt%)	0.22	0.8	0.8	0.9022
Sulfur (wt%)	0.005	0.005	0.005	0.0059
Vanadium (wt%)		0.0013	0.040	0.0133
Niobium (wt%)		0.0013	0.013	0.0142
Nitrogen (wt%)	0.005	0.010	0.015	0.0101
Titanium (wt%) (est.)	0.003	0.003	0.003	0.0044
Parameter	LCAK	HSLA	HSLA-LR	
Breakout cracks (%) (plant experience)	1.5	0.6	2.0	
Critical Strain for cracks(%) (Saintillana's Model ^[3])	0.06	0.26 (Rare to crack)	0.02 (Easy to crack)	
Crack Susceptibility	High	Low	Very high	

Concentration of Vanadium and Nitrogen change in the three steels

Addition of small amount of Titanium in the three steel types leads to lesser chance of cracks^[2]

However a small increase in Vanadium and Nitrogen concentration from HSLA to HSLA-LR steel causes more hot tear cracks and breakouts^[2]

Effect of Nitride Precipitates^[3]

Steel Phase details from CON1D and Simulation Details

Steel Grade	Liquidus Temperature (C)	Solidus Temperature (C)	Delta to Austenite Transition Temperature (C)
LCAK	1532.0	1511.4	1406.8
HSLA	1527.6	1504.1	1423.4
HSLA-LR	1526.8	1501.7	1415.7

Parameter	LCAK	HSLA	HSLA-LR	
Initial input temperature from User(C) Guess temperature calculated by program(C)	1600 -	1600 -	1600 -	Smaller temperature steps used in
Temperature step size(C)	1	0.01	0.01 🗲	to correctly capture the presence of
Simulation End temperature (C)	800 80	900	800	Niobium and vanadium precipitates

University of Illinois at Urbana-Champaign

```
Metals Processing Simulation Lab
```

Aravind Murali

• 13

LCAK steel – Formation of Nitride Precipitates

Increased element concentration due to segregation results in formation of nitride precipitates (mainly TiN) in Delta Ferrite Phase.

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Aravind Murali	•	17

Summary of results from Santillana Cases^[3]

Start Temperature for Precipitation of Nitrides							
Parameter	LCAK	HSLA	HSLA-LR	HSLA (With Segregation)			
Temperature at which Nitrides precipitates start precipitating (C)	1269	1311	1343	1436			
Type of Nitride precipitates formed	TiN	(Ti,Nb,V)C,N)	(Ti,Nb,V)(C,N)	(Ti,Nb,V)(C,N)			
Phase in which Nitrides first form	Austenite	Austenite	Austenite	Delta Ferrite			

- Use of data from segregation model and comparison with the steels, it is seen qualitatively that HSLA steel (with segregation) forms Precipitates in Delta-Ferrite Phase
- · Presence of TiN precipitates early in Delta Ferrite helps to tie up the nitrogen
- This may lead to less cracks susceptibility [3]

18

Conclusions

- 1. Model startup problems have been overcome with a new method to find a good starting temperature.
- 2. Modifications to the model solution methodology have made it more robust: improved initial guess at each temperature step, and bounding on the Newton-Raphson solver.

Future Work

- 1. Incorporating automatic temperature stepping
- 2. Incorporating additional precipitates of interest
- 3. Kinetics program development and interfacing with other models
- 4. Apply model system to realistic systems, ductility, and crack prediction

- Particle-Size-Grouping Model of Precipitation Kinetics in Micro-alloyed Steels, Kun Xu, B.G.Thomas, Metallurgical Materials Transaction A, 2012,vol43,pp1079
- 'Effect of V and N on the microstructure evolution during continuous casting of steel', B.Santillana, D.G.Eskin,R.Boom,L.Latgerman,3rd International Conference on Advances in Solidification Processes, Rolduc, The Netherlands, June 2011

20

Aravind Murali

• 24

A5.Modifications proposed for finding optimum Newton Step (relaxation parameter)

28